翻訳と辞書
Words near each other
・ Grotesque Wedlock
・ Grotesquerie
・ Groth
・ Grothe
・ Grothendieck category
・ Grothendieck connection
・ Grothendieck construction
・ Grothendieck duality
・ Grothendieck existence theorem
・ Grothendieck group
・ Grothendieck inequality
・ Grothendieck local duality
・ Grothendieck space
・ Grothendieck spectral sequence
・ Grothendieck topology
Grothendieck trace formula
・ Grothendieck universe
・ Grothendieck's connectedness theorem
・ Grothendieck's Galois theory
・ Grothendieck's relative point of view
・ Grothendieck's Tôhoku paper
・ Grothendieck–Katz p-curvature conjecture
・ Grothendieck–Ogg–Shafarevich formula
・ Grothendieck–Riemann–Roch theorem
・ Grothendieck–Teichmüller group
・ Grothusenkoog
・ Grotius Lectures
・ Grotius Society
・ Grotiusomyia
・ Grotki


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Grothendieck trace formula : ウィキペディア英語版
Grothendieck trace formula
In algebraic geometry, the Grothendieck trace formula expresses the number of points of a variety over a finite field in terms of the trace of the Frobenius endomorphism on its cohomology groups. There are several generalizations: the Frobenius endomorphism can be replaced by a more general endomorphism, in which case the points over a finite field are replaced by its fixed points, and there is also a more general version for a sheaf over the variety, where the cohomology groups are replaced by cohomology with coefficients in the sheaf.
The Grothendieck trace formula is an analogue in algebraic geometry of the Lefschetz fixed-point theorem in algebraic topology.
One application of the Grothendieck trace formula is to express the zeta function of a variety over a finite field, or more generally the L-series of a sheaf, as a sum over traces of Frobenius on cohomology groups. This is one of the steps used in the proof of the Weil conjectures.
Behrend's trace formula generalizes the formula to algebraic stacks.
==References==

*
*
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Grothendieck trace formula」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.